PHYSICAL REVIEW B 71, 184424(2005

Quantum dimer model with Z, liquid ground state: Interpolation between cylinder and disk
topologies and toy model for a topological quantum bit
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We consider a quantum dimer model on the kagome lattice, which was introduced réBéaysy Rev. Lett.
89, 137202(2002]. It realizes aZ, liquid phase and its spectrum was obtained exactly. It displays a topo-
logical degeneracy when the lattice has a nontrivial geonietriynder, torus, etc We discuss and solve two
extensions of the model where perturbations along lines are introduced: first a potential-energy term repelling
(or attracting the dimers along a line and second, a perturbation allowing to create, move, or destroy mono-
mers. For each of these perturbations we show that there exists a critical value above which, in the thermo-
dynamic limit, the degeneracy of the ground state is lifted frofor2a cylindey to 1. In both cases the exact
value of the gap between the first two levels is obtained by a mapping to an Ising chain in a transverse field.
This model provides an example of a solvable Hamiltonian for a topological quantum bit where the two
perturbations act as diagonal and transverse operators in the two-dimensional subspace. We discuss how
crossing the transitions may be used in the manipulation of the quantum bit to simultaneously optimize the
frequency of operation and the losses due to decoherence.
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[. INTRODUCTION spectrum(and wave functionscan be obtained in an elemen-
tary way, and the excitations consist of static and noninter-
Quantum dimer model€ (QDM) provide simple acting Ising vortice$(visong9). In this paper we show how
exampled* of microscopic Hamiltonians with short-ranged the solution of the model extends to a situation where an
resonating valence-bond ground stai@sdimer liquid with  external potential is applied along a line of the system. The
gapped excitations and no broken symméity liquids). It  solution is obtained by noting that the bulk of the system
has been known for a long time that such liquids are charaadecouples from the line, and the line is exactly described by
terized by topological orderalthough the system breaks no an Ising chain in transverse fie{tCTF). As a result, we find
symmetry and has no local order parameter, the ground stagefinite critical value\. of the perturbation below which the
acquires a degeneracy the thermodynamic limjtthat de-  system behaves as a cylindéfhe energy difference be-
pends on the genus of the surface where the model is definedieen the two quasidegenerate ground states is exponentially
(disk, cylinder, torus, etg. Remarkably, such a topological small in the system sizeFor A > \. the system behaves as a
degeneracy is insensitive to small, local perturbatiGugeh  disk and the ground state is separated from the first excited
as weak disorders, for instance® On the other hand, it is state by a finite ga®@ (A —\.).
clear that strong-enough local perturbations should lift this
degeneracy. Consider, for instanceZadimer liquid on a
cylinder, with a twofold, degenerate ground state. We turn on
an external potential that penalizésith an energy\ >0)
any dimer sitting across a line extending from one edge of
the cylinder to the other. For very large one effectively
“cuts” the cylinder down to a disk topology, and one expects
a single, nondegenerate ground state. It is therefore natural to
expect a phase transition at some intermediate velue
We provide here a simple model where the spectrum, and
the ground state degeneracy in particular, caexstlycal-
culated as a function of and the system size. This model
generalizes a QDM on the kagome latti¢eetwork of FIG. 1. A dimer covering on the kagome lattifat bonds. The
corner-sharing triangles with triangular and hexagonakorresponding representation with arrows living on the bonds of the
plaquettes, see Fig) that was introduced recentiyThe full  hexagonal latticédashed linesis displayed.
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It has been argued that gapped systems with a topological
degeneracy could provide physical ways to implement quan-
tum bits (qubits that would be protected from decoherence
by their topological natur&’:1%12 Since nolocal measure-
ment can distinguish the different ground states if the system
is infinitely large, any manipulatioffunitary rotation or
measuremen(projection of the state of the qubit through
local observables will have to rely on finite-size effects. We
discuss this issue in Sec. V in light of the present solvable
model. The effective Hamiltonian acting on the two lowest
levels is expressed in terms of two generafbfsand T# of
rotations of the qubit about two quantization axes. We finally
explain how one could take advantage of the phase transition FIG. 2. Kagome lattice on a cylinder with a citgoing from
at A=)\ to perform unitary rotations. The problems of this one edge of the cylinder to the other. The dual it passes
approach, such as thermal excitations, will also be discusseatrough the centers of the triangles and winds around the cylinder.
briefly.

freedom7‘=+1.1" We note that, in principle, the'=+1 de-
Il. ARROW REPRESENTATION, SOLVABLE QDM, AND grees of freedom could be physically realized with real spins

TOPOLOGICAL DEGENERACY living on a kagome lattice. _A strong easy-axis anisotropy
could then force them to point toward the center of one of
We consider a QDM defined on a kagome lattice withthe neighboring triangles.
periodic boundary conditions in one directi@rylinden, but
the arguments are easily generalized to other topologies. .
B. Bulk Hamiltonian

A. Arrow representation The QDM introduced in Ref. 4 is

1)

the QDM discussed here, we begin by reminding the repre-
sentation of dimer coverings of the kagome lattice in terms
of arrows*13 All the eigenstates are easily obtained, becausefapera-
The sites of a kagome lattid€ (notedi) can be identified tors commute with each other and have two eigenvalues
with bonds of the hexagonal lattide.!* The triangles oK~ of=+118
(notedt) are sites oH. As for hexagons oK (notedh), they
also correspond to hexagons tof
From a(fully packed dimer covering ofK we orientate
the bonds oH (arrows in the following way: Each bond of As usual for dimer models, the configurations are grouped
H is a site ofK, which has one dimer, and the correspondingin topological sectordTS); two configurations are in the
arrow points toward the interior of the trianglef K) where  same TS if and only if they can be transformed into each
the other end of the dimer is located. This is illustrated inother by a succession @fical'® moves. As explained below,
Fig. 1. As a consequence, the number of incoming agpw there are two TS when the system has the topology of a
is even(0 or 2 at each vertex of. Inversely, any arrow cylinder.
configuration satisfying the parity constraint at each vertex First, draw a cutA (crossing the bonds of the lattice

6
Because it is the natural formalism to describe and solve
Ho=-20ﬁ=-EH Trz1i-
h h 1

C. Topological sectors

defines a unique dimer covering. going from one edge of the cylinder to the otliEig. 2). Let
We can now define the operator§ 7, ando™ acting on N, be the number of dimers crossingy It has a simple
the arrows. The notations are those of Refs. 4 and 15. expression in terms of the,
(i) 7 flips the arrow at sitd € K. Any product 77 - L
around aclose loop(of H) is a “physical” operator in the N _}2 (1= ?)
sense that it conserves all the constraints. AT 25 v

(i) of=TI%,7. Flips the six arrows=1---6 around the
hexagorh (smallest closed loop oH).2® From the definition =~ Where the sites=0---L are the centers of the bondstéfthat
of 7 above, theo* operators satisfyo*)2=1 and commute are cut byA, as shown in Fig. 3. For simplicity, we assume
with each other. in Eq. (2) that no dimer crosses in the reference covering.
(i) 7% Compares the arrow at sifewith the arrow in ~ Any local dimer move conserves the parity B, and it
some (arbitrary reference covering=+1 if they are the IS natural to define
same, —1 otherwige The hard-core constraint on dimers . _ N,
translates intoryr;75=1 for every triangle(012) of the T ‘iHA T=(CDN 3
kagome lattice. °
From now on, and for most purposes, one can forget théll coverings withT*=1 (-1) define a TS calle®, (S.) and
dimers themselves and focus only on the bond degrees @i, can be diagonalized separately in each sector.
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FIG. 3. Dimer covering of the kagome lattice in the vicinity of
the cutA (dashed ling The arrows next ta [appearing in Eq(2)]
are shown. The signs in the hexagons Iht.,... ,h , Ext. indicate
the values of the corresponding pseudospifigwith the assump- FIG. 4. Cylinder (full lines) and loops(dashed lines along
tion that the reference configuration has no dimer crosaing which a dimer configuration differs from the reference. The signs

indicate the value 0&* in each domain.

D. Topological degeneracy ofH

It is straightforward to check that, has the same energy tence of an arrow representation makes it possible to exactly
in each sector. Let” be a closed loop encircling the cylinder calculate the spectrurof H="Ho+H;.
(Fig. 2), and define an operator,
A. Mapping to the ICTF
=11 7, () Peme

oAt The HamiltonianH =Hy+H; [Eqgs. (1) and (7)] can be
) ] ) separated into “bulk” and “chain” parts as below,
that flips all the corresponding arrows. commutes with all

the o* operators and mag, onto S._, H=Ha+ Hpuiks (8)
TZTX == TXTZ (5) L L
This shows that ifly) is an eigenstate of{,, T9) is an Ha==2 on * A (1-7), 9
i=1 i=0

eigenstate of{, with the same energgbut in the other TS
This demonstrates the twofoldopologica) degeneracy of

the eigenstates dff,. Houk=— 2 O (10)
h'eA
1Il. PERTURBATION LIFTING THE DEGENERACY Itis important to emphasize tha{A andeu|k commute with
BETWEEN THE T*=+1 SECTORS each otherand can therefore be treated separately. From now

on we concentrate of,.
We introduce a potential-energy term that couples to the ¢* pseudospins-A of operator can be introduced for
dimers crossing\,?° each hexagoh in the following way. Due to the local con-
.= AN ©) straint (7'7;7¢=1 on each triangle oK), the bonds ofH
1 A where 7=-1 necessarily form nonintersecting closed
. loops?! We interpret these loops as domain walls for some
Ising pseudospingf=+1 that leave on each hexagon. To
:)‘2 1-7). () remove the twofold ambiguity we assume that the exterior
=0 has a fixed spiw?,=1. In turn, this defines &, associated
As discussed in the Introduction, we expect that a small with the “interior” (Fig. 4). It is easy to check that this Ising
should not affect the twofold degeneracy, while-1 should  spin labels the TS of the configuration because
leave a single ground state. In presenceHofEHy+H;, o0 =1II, . o> 7' =T*. The other bulk pseudospins are those in-
T*=(-1)M is still a conserved quantity, b does not com-  troduced by Elser and Zeri§ Eventually we mention that?.
mute with{,, and the two sectors are no longer degenerat@nd o}, anticommutgthey commute if not on the same hexa-
when A #0. Since fora>1 the system minimizesl,, the  gon), as suggested by the Pauli matrix notation. This is easily
ground state of ther*=+1 sector tends to a state with checked from the definition of}, in terms of arrows. From
N, =0 and that of theM=-1 sector to a state witN,=1.  the definition ofc?, we have the relatiofi??
Instead of having a superposition of dimer configurations , 2
with different values olN,, but a fixedparity (nonlocal ob- OO =T, (11)
servablg, the large\ limit corresponds to a well-defineld, whereh and h' are the two hexagons touchirig For an

(sum oflocal operators: While T is still a conserved quan- arrow i next to a boundarysay interioj, this relation is
tity, we already see that the topological nature of themo difie?j o y '

T*=+1 andT*=-1 sectors disappears whans large.
The perturbatiort{; is identical to the one used by loffe otol =T (12)

et al/ in a triangular-lattice QDM in order to manipulate 0

(“phase shifter) their qubit. However, in our caséje exis- These relations are used to get
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L L 0 T T
Ha=-2 ok - X ofof +(L+DA, (13 hEE G
i=1 i=0 A
where the two boundary spins are identifiedods o7, and ) -
Oh, ..~ Text It appears thatt, is nothing but the Hamiltonian
of an open ICTF with a magnetic exchangeand a trans-
verse field equal to 1. This model can be solved by a stan- A
dard Jordan-Wigner transformation, and it maps onto free -
fermions. In the thermodynamic limit it has a paramagnetic
phase withaf)y=0 for [\| <A.=1 and an ordered phase with

(o) 0 for [\ >Ac=1. FIG. 5. Top: K lattice in the vicinity of the cit (dashed
. . . 5. Top: Kagome lattice in the vicinity of the ashe
The boundary Spms}é and Of‘m play special roles. line). Bottom: Mixed dimer-monomer configuration and the arrow

Oh, ., = Tex s fixed to 1, butog= o7, is free(but conserved by yepresentation.
'H,) and labels the TS. The spectrum of the ICTF can thus be
studied separately fooi=+1 or o5=—1. One takes\=0
(ferromagnetic chainwithout loss of generality. The sector
with of=+1 thus corresponds tnfrustrated boundary con-
ditionsfor the (pseudospinchain. On the other hand, choos-
ing og=-1 amounts to imposing at least one Ising domai
wall in the systent? In the thermodynamic limit both sectors
have the same energer site but they may have a finite A. Hamiltonian
difference in the total energygap. In the paramagnetic , . _ .
phase (A <1), because of the finite spin-spin correlation We relax .the parlty.constram’(‘oﬁlﬁz-.l on gach triangle
length &(\), the frustration has an exponentially smaller ef. b SO that trlangles_ with one or thfe‘? incoming arrows are
fect on the ground-state energy, and the energy differenc%"ow.ed' When a triangle hameincoming arrow, it is natu-
between the two TS IAE~exp(-L/&) with £=In(1/x)" rally !nterprefted as the presence of a mo_nor(rmrhole at
(see Ref. 12 and Appendix)AOn the other hand, in the _the site of this arrov(s_ee Fig. 5 When a triangle hathree_

) . . ’ incoming arrows, we interpret it as a monomer and a dimer,
ferromagnetic phasé\>1), the Ising spins want to order

" . which are delocalized over the three sike<lipping one
and the boundary condition§ # of generates &inite energy ; . e :
CostAE~ O(LY) [see Eq(A13)]. arrow (i.e., acting with7) on a dimer state therefore creates

two monomers on the nearby triangl@me of which may be
The result is thus that for <1 the ground state is asymp- y al Y

. . 27>, delocalized over three sitesWe consider the following
totically twofold degenerate in the thermodynamic limit. The Hamiltonian:
gap between the two TS i$E ~exd —L/&(\)] whereé is the '

to be destroyed along a line winding around the cylinder. As
we will see, this model is closely related to the one discussed
in the Sec. lIl:A is replaced byA", monomers will play the
role of the visons, and the ICTF will have periodic and an-
ntiperiodic boundary conditions, instead of open ones.

correlation length of the ICTF. In the thermodynamic limit Hi==-> ol +U> (1 -2 27 (14)

there is a finite critical valua.=1, above which the topo- h t 0tz

logical degeneracy is destroyed. Aboxg the Ising pseu-

dospins have a positive magnetization. Sia¢és an opera- 6

tor that creates an Ising vortevisorf), it is natural to =2l f+uX@-ra), (15)
h i=1 t

interpret(of) >0 as the existence of eondensatef those

particles (along A). This condensation is responsible for whereh,.. ¢ are the sites around hexagbpandt; , ; are the
changing the “effective” topology of the system from a cyl- sjtes of the triangl¢ (see Fig. 5. U is a large energy enforc-
inder into a disk. In this simple model what happens alongng the constraint on low-energy states. This type of model
the chainA is decoupled from the bulk of the system. The as first considered by Kitaéwor U >0 the ground state of
perturbation caused by the potentialdoes not extend into  the Hamiltoniar[Eq. (15)] is the same as fdd =« [equiva-
the bulk, which remains a liquid with noninteracting and |ent to Eq.(1)] since7 7 7¢ commutes with all the™. How-
stafic vison excitations. ever, static pairs of monomers are present in excited states
with energies greater thari2above the ground state.
. Like loffe and co-workerg;*! we wish to use these mono-
IV. MIXING THE  T"=+1 SECTORS WITH MONOMERS mers to couple the two TS. For this purpose the monomers
The perturbatior#,; discussed in Sec. Ill is not the only are allowed to be created and to propagate along one closed
way to remove the topological degeneracy. It is well knownloop A" winding around the cylinde(Fig. 2). The simplest
that in the presence of mobile monomef$=(-1)M is no  term which does this is
longer conserved: This property was used in Refs. 7 and 11 ,
to mix the topological sectors. We will show that in our Hl__“u_z* . (16)
kagome geometry the arrow representation of the dimer A
model allows us to exactly compute the spectrum of the sysfThis choice of normalization will make the analogy with the
tem when monomers are allowed to be created, to hop, and perturbation clearerWhen a7 term acts on a site located
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between two triangles satisfying the constre(h‘i‘gqfquzzl), L=10
it creates a pair of monomers. When it acts on a pair of 15
triangles violating the constraint, the pair of monomers is 0.8
destroyed. If it acts on a site located between triangles with A0.61
different values ofr 7 7, a monomer hops from one tri- 041
angle to the other. 021

0 * u oo"c T T
B. Mapping o the ICTE 02 04 06 08 1 12 14

“As in Eq. (8), Ho+H; splits into bulk and one- FIG. 6. Effect of a change of boundary conditions on the
dimensional part$} ground-state energy of an ICTF witki=10 spins as a function of
Hé rHL= Héu|k+ My, 17) the (ferromagnetit exchange\. Circles: closed chain with periodic

and antiperiodic boundary conditions. Thin line: ground-state en-
ergy difference between open chain with ferromagntic- 1) and

Hopuk="— E g)‘h +U E 1- 7{ 7{ 7{), (19 antiferromagnetid | --- 7) boundary conditions. Thick lineN=c
h teA* 0tz case(same result for the open and closed chains
Hy=—ulU > 7+U > @a- 7{(7{(7{(2) (19) magnetic phase and a ferromagnetic phase. The calculation

of the gap between the two sectors amounts to studying a
closed ICTF with periodic and antiperiodic boundary condi-
One can simply check thet(y+ and Hy,,,c commute with  tions. The exact result for the energy differenkg’ is de-
each other, so that one has to study a one-dimensional modgled in Appendix B(see also Ref. 12with the help of a

H,*. This model is identical to a closed ICT®ith periodic  Jordan-Wigner transformation. In the limit of a large system
or antiperiodic boundary conditiopsas explained below. (L>1) itis given by

Eachtriangle t crossed byA" corresponds to aite of the

ieA” teA”

. X . i . . 1- 2
spin g:ham. The associated transverse-field term for this Ising AE'=E, -E.~2U M 4t ofor u<1 (25
spin is T
OU= Ty Ty (20 ~2U(u-1) for u>1. (26)
We define thez component of the spins as The result forL=10 is plotted in Fig. 6. As forH,, the
~ critical valueu.=1 separates a regime with an exponentiall
Oi= A 7o, (21) Me p g p y

small splitting between the sectdi&q. (25)] and a regime

where 0 is ar(arbitrary origin onA* andi(t) is the site ofk ~ With a finite gap between theifiEq. (26)]. In the spin lan-
in common with triangleg andt-1. It is simple to check 9uage, the ferromagnetic phase is characterize(Gfy# 0.
that thea® and o defined abovénot to be confused witb*  Going back to dimer and monomers variables, we find that
ando?) obey the usual Pauli matrix algebra and play the roleat flips all the arrows located o™ between the origin ant

of spin- operators. In addition, these definitions ensure thafl NUS, it creates or annihilates a pair of monomers sitting at
both ends of the string or moves a monomer from one end to

G101 = TZ (22)  the other. In both caség creates or destroys a monomer on
the trianglet.?® (5% # 0 can thus be interpreted asanden-
sationof monomers along\". This is equivalent to the con-
densate of visons mentioned in the casé®fwhenA>1.
To conclude this section we discuss a difference between
T 5% =7, (23)  the and theu perturbations. In the limit wherk — % no
dimer can sit onA anymore and the torus is reduced to a
where T# [defined in Eq.(4)] commutes with}{,+ (in the  rectangle, as if the lattice had been cut with scissors. If the
same way as before wifft{,, T]=0). It can be successively same geometrical picture was true for the perturbafion
set to +1 to obtain the whole spectrum. With these notationgalongA”, one would erroneously conclude that the system is

wheret; is the common site between triangkeandt+1 (as
in Fig. 5. BecauseA” is a closed curve, special care is
needed for the last term,

Hy reads effectively transformed intdwo cylinders with a fourfold
L2 L1 ground state degeneracy. This is incorrect for the following
1 = -yl T2o? 7+ ~ S 5% 4 cst. reason. The path™ chosen to defing%(A™) [Eq. (4)] may be
HA H ( g ) E) ! shifted by multiplication with as* operator,
(24) P (NTAAY =TA4y), (27)

This is the Hamiltonian of an ICTF with periodic boundary whereh is a hexagon next ta; and A, is identical toA],
conditions whernr?=1 and with antiperiodic boundary con- except that it passes on the other sidé.dfrom Eq.(27), we
ditions whenT?=-1. As for H,, the model has, in the ther- see thafT%A})|0) does not depend on the location &f, as
modynamic limit, a phase transition at=1 between a para- long as this closed curve is deformed by passing only on
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hexagons witho*(h)=1. In the case of a perturbatiqn the  boundary conditions for an ICTRwith exchangeuU and

ground state satisfies*(h)|0)=|0) for all hexagonsh, even  transverse fieldJ).*

those along\”. (This is not true for the\ perturbation which If the system is operated below the critical valued afnd

does not commute witb™.) Therefore, one cannot indepen- u«, the qubit precesses at a frequency that is exponentially

dently flip the topological sector of the “upper” cylinder with small in the system size. The cylinder topology and the low

some T; without changing the sector of the “lower part,” density of monomers protect the degeneracy of the spectrum.

which is controlled by a3, sinceT3|0)=Tj|0). This is the regime mentioned by loffe and co-workers. How-
ever, the system size cannot be too large, because the time
required for a unitary rotation would become exponentially

V. ATOY MODEL FOR A TOPOLOGICAL QUBIT long. On the other hand, if the system is not large enough, its

Kitae\P suggested that systems with topologically degenfopology does not fully protect it from decoherence by ex-
erate ground states could be used to realize qubits protecté@mal perturbations.

from decoherence. This suggestion was then made more pre- If one of the external parametefs or ) is pushed above
cise by loffe and co-workefd! and Doucot and IS critical value, the frequency becomes finite, even in case

co-workeré228who proposed to use Josephson junctions ar9f & large system size. We may therefore take advantage of
rays to implement such a system. As mentioned in the Introth® phase transitions in a large system. In such a case the
duction, the topological nature of the degeneracy makes fubit is topologically protected as long asand w are
difficult to “manipulate” (perform unitary rotation because Smaller than their critical values, even if they are not pre-
it is almost insensitive to local couplings. On the other handCisely set to zero or if they introduce some noise. It is only
it may be difficult to apply a perturbation corresponding to aduring the manipulatiofix(t) > 1 or u(t)>1] that the state
nonlocal operatofsuch asT? or TY). If, however, the system of the qubit evolves(arjd is sensitive to the external noise
allows for a hardware implementation of such a nonlocaentering throughi or A”).
operator? it represents a dangerous channel through which TO preserve an adiabatic evolution one must avoid transi-
perturbations could bypass the topological protection andions to other eigenstates. However the gap in the spectrum
contribute to the decoherence of the qubit. If such a nonlocaf the ICTF becomes smalbf the order of~1/L) in the
coupling to the system exists, one must be able to “disconvicinity of the transition. This limits the typical time of the
nect” it efficiently when it is not active. unitary rotation to be at least of the order lof This linear

The clever solution proposed in Refs. 7 and 11 consists olependence in the system size is an interesting property, be-
perturbing the system with two external potentials actingc@use it should be compared to texponentialdependence
along two lines, exactly like\ andA*. While these pertur- (~A™") present in the perturbative regime. Also because of
bations are localmore precisely they are sums of local this small gap, the temperature must Be<1/L to avoid
terms, they induce a splitting of the two ground states pro-thermal excitations when (or u) is close to 1. Using the
portional toA" and therefore induce a slow precession of thetransition to perform unitary rotation, therefore, seems to im-
qubit. In this section we take advantage of the exact solutioffrove the time of operation and could enable us to use a

of the model to discuss these effects beyond the regimiarger system and benefit from a stronger topological protec-
wherext<1. tion. It also requires us to work at a lower temperature than

that for a qubit operated in the perturbative u<1) regime
_ ) only, and this may represent a severe limitation.
A. Unitary rotations
tonci:a?qn;gmmg the perturbations alonyandA™ the Hamil- B. Reading out the state of the qubit
We assume that the qubit is in a linear combination of the
H\w) =Ho +Hy +Hy two topological sectors|y)=al+)+p|-) where TX|+)=|+)
6 and TY-)=-|-). We wish to measuréx|?> with a local ob-
==X Il A2 +U> Q-AZD) (28)  servable. This is not directly possible if the system is very
hoi=1 t large, since any local observable has expectation values in
|+) and|—), which are exponentially close. Likewise, a local
_ 7_ X _ observable has a vanishing matrix element betweerand
wJ b i > (7 =1 29 |-). A possible procedure could be to switch adiabatically
the potential\ above the transition. For a strong-enough
From the previous calculations we know thEt(A,u=0) the statel+) evolves to a superposition of dimer coverings
lifts the degeneracy of the two TS. It acts in this two- with no dimer crossing\. On the other hand;-) evolves to
dimensional subspace as=(\)T*, where AE(N), given in  a superposition of dimer coverings witine dimer crossing
Egs.(A13) and (A15), is the energy difference between the A. This is because the parityT*) is a conserved quantity
ferromagnetic and antiferromagnetic boundary conditions founder the evolution, but the ground state has to minirhize
an ICTF with exchanga (and a unit transverse figldOn  as\(t) grows. A(projective measurement detecting the pres-
the other hand/(A=0,u) mixes the two sectors. Its action ence of a dimer on some bond crossihgwill thus give 1
is described byUAE'(u)T? where AE’ [Eq. (B23)] is the  with the probability|a|?/L. The whole operation has to be
energy difference between the periodic and antiperiodicepeated many timeg~L) before|a|? is known with a rea-

ieA” ieA
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sonable accuracy, but one may improve the efficiency of the L
measurement by having a bond aloAgwhere the energy H==2 05— u>, 0202, (A1)
cost of a dimer is less than on other boftilswhich case the n=1 =

dimer, if present, will localize on this particular bond when ith two fixed spins at the ends of the chal =1 and
becomes large Of course the reading procedure describedWI o pi ey

b fers f h limitatiofi ional o=%1, depending on the boundary conditions. Using a
above suffers from the same limitatioftsne proportional to i 4arq Jordan- -Wigner transformation to represent the Ising
L and low temperatudeas the unitary rotation.

operators with spinless fermions,

ot=2cle, - 1, (A2)
VI. CONCLUSIONS

n-1
We have shown that the QDM of E@l) can be simply Yo z_ ot . +
solved in the presence of two kinds of perturbations: an ex- o7 +i0" =20, ex i GG (A3)
ternal potential that couples to dimers crossing a line or the
inclusion of monomers. This provides a simple example of ot +
system with &, fractionalized phase, where the topological 701 = (€ C)(Cre1 ~ Cret). (Ad)
degeneracy is destroyed by tuning an external parametey is quadratic in the fermion operators and can be diagonal-
through a quantum phase transitidrelonging to the classi- ized by a Bogoliubov transformation. To find the quasiparti-

cal Ising two-dimensional2D) universality clasp cle creation operators” we consider the following form
We also discussed some properties of this toy model fronjAnsat:3!

the point of view of an ideal topological qubit, in which case

i=0

the exact solution allows us to follow the two lowest eigen- di=f1 -, (A5)
states as a function of some external parameters. These two

parameters can be used to perform unitary rotations of the L+1 L+1

qubit and provide an exactly solvable version of some ideas 1= "¢l +c,) +ib(w) X "¢l -c,),  (A6)
introduced previously.In addition, we pointed out that the n=0 n=0

phase transition could, in principle, be used to improve the
robustness to decoherence, because it could enable us to J4e
a larger(although not infinitg system. Concerning the mea- [H,d]]=E(w)d],
surement of the qubit, we also emphasize the interesting
properties of the phase transition as it turns a nonlocal prop- _
erty (parity of the number of dimers crossing a ljn@to a [#.d,]= -~ E(w)d.,, (A7)
local property(dimer density. From this point of view, we  with E(w)=0, provided the following equations are satis-
note that the method has some resemblance to the flu¥e(q:

trapping experiment imagined by Senthil and Fishes de-

herew andb(w) have to be determined. One can check that

tect visons inZ, fractionalized systems. E(w) == 2ib(w)(1 + o™, (A8)
iIE(w)b(w)=-2(1 +\w), (A9)
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APPENDIX A: GROUND-STATE ENERGY OF AN ICTF

The third equation(A10) comes from the boundary at
WITH OPEN BOUNDARY CONDITIONS

n=L+1 and is a constraint on the availate

We apply fixed bou_ndary conditions to an open ICTF and 2. CaseA=(L+1/L+2)
compute the energy difference between those for the cases of o
ferromagnetic boundary conditiofisvo fixed up-spins at the ~ ForA=(L+1/L+2) the Eq.(A10) hasL +1 distinct solu-
ends and antiferromagnetic boundary conditiofmne up- tions of the form,
spin at one end and a down-spin at the othEnis result was w=6eX with ke [0,7]
obtained recently by Dougcatt al,'? but we give here for
completeness a detailed derivation of the result.

sinf(L+ 1)k
_ Sinl(L+ Dk] (AL2)
sin (L + 2)k]
1. Hamiltonian and free fermions These fermionic levels are those required to describe the
The Hamiltonian is L+1 spinsn=0---L. Because we have chosErio be always
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positive, the absolute ground stat&hatever of) is the L1 L-1
vacuum|0) of the df. The lowest excited state ig |0), H==2, 08— u>, 0202, (B1)
n=0 n=0

where we have added the fermion with the smallest energy

A. It corresponds to the solutidg of Eq. (A12), whichisthe  with ¢?=¢%. The Ising operators are represented with spin-
closest tor. This solution can be calculated by an expansioness fermions, as in Eq§A2)—(A4). Due to the periodic

in 1/L and we obtain boundary conditions we also have
AT L-1
AS20 =D+ m +oL). (AL3) 0{106= (¢l 1 +c (o Cé)exp(i > Cﬁcn) .
n=0
So far we have not specified the valuedsgfcorresponding to (B2)

each level. In the limit wherg > 1 it is clear that the ground

o ; It is simple to check that
state is in the sectarg=1. Since one can show that no level

crossing occurs fok >0 in such a finite chain, the fermion L1 - a )
vacuum|0) satisfieso$|0)=|0) for all A >0 and corresponds I oh=exp im> cle (B3)
to a state of the system with ferromagnetic boundaries. On n=0 n=0

the other hand, inserting ant], fermion changes the sign of is a conserved quantity. The spectrum can thus be studied
o (since audl anticommute withog=cj+co). The first ex-  separately in the sectof"2o*=+1. HoweverH has off-

cited stated, |0) is thus the ground state of the system with diagonal matrix elements in the natural Ising basis which are
antiferromagnetic boundary conditiofgf=-1), and the gap all <0. This ensures that the ground state has only positive

between the two sectors is given Ay[Eq. (A13)]. weight in this basis, and it therefore belongs to the sector
L-1
3. Case O<A<(L+1/L+2) [Ta=1. (B4)

=0
In the range 0>\=(L+1/L+2), only L solutions of the ) " ) ) )
form of Egs.(A12) exist. The “missing” solutionu, has the  In the following we thus consider fermions subjectecare
lowest energy and is reak, e ]-=,0]. It corresponds to a tiperiodic boundary conditionfsee Egs(B3) and (B4) and

bound statdimaginary wave vectorfor the fermions. In the the — sign in the right-hand side of E¢B2)].

thermodynamic limit one hasy=-1/L and finite-size cor- After Fourier transform the Hamiltonian becomes
rections can be evaluated, o
Hechain= 2 lip S|n(k)ClCik+ H.c]
1 k=(2n+1)7r/L
- _ = 2L+1 _\2 4L
oI~ *ATHL-M)FOMAT), (ALY - 2]odp cosk) + 1]+ 1}, (85)

_ _ which is diagonalized by a Bogoliubov transformation,
which gives an energy gap,

1
A=22"11 -0\ + O(LA%Y). (A15) Hehain= > E(k)|:dldk_ 5} ) (B6)
k=(2n+1) il
As before, this gap is the ground-state energy difference be- ’,
tween antiferromagnetic and ferromagnetic boundary condi- €(k) = 2Vpu”+ 1 + 2u cogk). (B7)
tions for the spin chain. Using the explicit form of the transformation and the antipe-
riodic boundary conditions on the fermions, one can show
APPENDIX B: GROUND-STATE ENERGY OF AN ICTF that the vacuunio) of the d fermions satisfies
WITH PERIODIC OR ANTIPERIODIC BOUNDARY L-1
CONDITIONS exp<in cﬁcn)|0> = +(0). (B8)
n=0

We compute the ground-state energy of a closed ICTF ] _ ]
with periodic and antiperiodic boundary conditions. The lat-This is consistent with E¢(B4) and the ground state is thus
ter result has also been obtained recently by Doetat.,*2  |0). Its energy is

but we give here a detailed derivation of the result. We also 1

note that this calculation has some similarities to the evalu- Ep=-= >  €K. (B9)
ation of the ground-state energy splitting in the triangular- 2\=(ni1)miL

lattice QDM at the Rokhsar-Kivelson poifiising a Pfaffian

technique.®

2. Antiperiodic boundary conditions

To ensure thatr{f =—of, the fermions are now subjected to
periodic boundary conditiongsee Eq.(B2)]. However, for
The Hamiltonian is pu>1 it is necessary to add ortﬁ: fermion to ensure the

1. Periodic boundary conditions

184424-8
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correct parity under a global spin flip. Since the dispersion B Aimz B

relation (k) is minimum in e(k=0)=2|u—1|, the ground
state foru>1 is

1) =d{[0). (B10)

The ground-state energy of the chain with antiperiodic

boundary conditions is thus

1
E,=-> > el+2u-1) for pu>1 (B11)
2k=(2n/L)7T
1
=== > €&k for Ospu<1. (B12)
2k:(2n/L)7-r

3. Energy difference

C C
A A
Ll IGO
» Relz]
- _uo
A A
(o3 C
B B

FIG. 7. Contour in the complex plane used to define the integral
Ic. The crosses on the real axis indicate the poles of Wl/sirand
the fat segments on the imaginary axis indicate the branch cuts of
f(2). The regionB is sent to Iniz]= oo,

From the calculation above the energy difference between

the ground states of the two boundary conditionsgfas w
<1)

L-1
Epn—Ep=1\2u>, [\s"coshao —cogKni1/0)
n=0
- \/coshao - cos(kn)J, (B13)
where
2n
ky= =, (B14)
L
and oy is defined by
241
coshay= K (=1), (B15)
y7
apg=—In(w). (B16)

The difference between the two sums can be related to
contour integral in the complex plane,

Ea-Ep=12uLl,, (B17)
where
o=~ %T c sifn((lz_)z) % (B18)
and
f(2) = Vcoshag — cog2). (B19)

The contour is shown Fig. 7. The equality, EB17), can be

demonstrated by using the fact that the poles inside the co

tour are located at=k, andz=k,,,», and they have alternat-
ing residues proportional toftk,)/L and +(ky.10)/L. The
contour can be decomposed into several regitywsia+1a
+lg+lc+le (Fig. 7). Using the odd parity of the integrand

n_

underz— -z, one hadc=Ic/, and using the periodicity under
z—z+2 one findsly+1,,=0. The integrand is exponen-
tially small when Infz] — +, so the regiorB does not con-
tribute. We therefore havigy=2l.. The integral over the re-
gion C is given by the discontinuity of the integrand along
the branch cut,

| _ 1 °°_d flir+o) f(ir +o")
=2, | sifL(ir +0)] ~ sin(L(r +0")]
_1(” veosHr) - costag)
- wfa dr sinh(Lr) (520

0

When the system size is large — ) the behavior ofl; is
dominated by values af close toag. In this limit,

/sinh * —— ysinh
c = - aof dre’t'\r - ag = . raoe‘L"OL‘m,
T ag 2\
a
(B21)
so that the energy difference is
2w sinh
Ep-Ep=2\2ullc =24/ =Pt (B22)
L
1- 2
~2 =B (B23)
L

The calculation oE5—Ep for ©>1 is almost identical to
the u<1 case described above. The difference between the
sums of e(k) on “even” and “odd” momenta is again ex-
pressed with the integrad}, but with ag=In(w). Combining
this with Egs.(B9) and (B11) gives
p -1

pwt.
o

Ex-Ep=2(u-1)+2 (B24)
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