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We consider a quantum dimer model on the kagome lattice, which was introduced recentlyfPhys. Rev. Lett.
89, 137202s2002dg. It realizes aZ2 liquid phase and its spectrum was obtained exactly. It displays a topo-
logical degeneracy when the lattice has a nontrivial geometryscylinder, torus, etcd. We discuss and solve two
extensions of the model where perturbations along lines are introduced: first a potential-energy term repelling
sor attractingd the dimers along a line and second, a perturbation allowing to create, move, or destroy mono-
mers. For each of these perturbations we show that there exists a critical value above which, in the thermo-
dynamic limit, the degeneracy of the ground state is lifted from 2son a cylinderd to 1. In both cases the exact
value of the gap between the first two levels is obtained by a mapping to an Ising chain in a transverse field.
This model provides an example of a solvable Hamiltonian for a topological quantum bit where the two
perturbations act as diagonal and transverse operators in the two-dimensional subspace. We discuss how
crossing the transitions may be used in the manipulation of the quantum bit to simultaneously optimize the
frequency of operation and the losses due to decoherence.
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I. INTRODUCTION

Quantum dimer models1,2 sQDMd provide simple
examples3,4 of microscopic Hamiltonians with short-ranged
resonating valence-bond ground statessor dimer liquidd with
gapped excitations and no broken symmetrysZ2 liquidsd. It
has been known for a long time that such liquids are charac-
terized by topological order;5 although the system breaks no
symmetry and has no local order parameter, the ground state
acquires a degeneracysin the thermodynamic limitd that de-
pends on the genus of the surface where the model is defined
sdisk, cylinder, torus, etc.d. Remarkably, such a topological
degeneracy is insensitive to small, local perturbationsssuch
as weak disorders, for instanced.6–8 On the other hand, it is
clear that strong-enough local perturbations should lift this
degeneracy. Consider, for instance, aZ2 dimer liquid on a
cylinder, with a twofold, degenerate ground state. We turn on
an external potential that penalizesswith an energyl.0d
any dimer sitting across a line extending from one edge of
the cylinder to the other. For very largel, one effectively
“cuts” the cylinder down to a disk topology, and one expects
a single, nondegenerate ground state. It is therefore natural to
expect a phase transition at some intermediate valuel.

We provide here a simple model where the spectrum, and
the ground state degeneracy in particular, can beexactlycal-
culated as a function ofl and the system size. This model
generalizes a QDM on the kagome latticesnetwork of
corner-sharing triangles with triangular and hexagonal
plaquettes, see Fig. 1d that was introduced recently.4 The full

spectrumsand wave functionsd can be obtained in an elemen-
tary way, and the excitations consist of static and noninter-
acting Ising vortices9 svisons10d. In this paper we show how
the solution of the model extends to a situation where an
external potential is applied along a line of the system. The
solution is obtained by noting that the bulk of the system
decouples from the line, and the line is exactly described by
an Ising chain in transverse fieldsICTFd. As a result, we find
a finite critical valuelc of the perturbation below which the
system behaves as a cylinder.sThe energy difference be-
tween the two quasidegenerate ground states is exponentially
small in the system size.d For l.lc the system behaves as a
disk and the ground state is separated from the first excited
state by a finite gapOsl−lcd.

FIG. 1. A dimer covering on the kagome latticesfat bondsd. The
corresponding representation with arrows living on the bonds of the
hexagonal latticesdashed linesd is displayed.

PHYSICAL REVIEW B 71, 184424s2005d

1098-0121/2005/71s18d/184424s10d/$23.00 ©2005 The American Physical Society184424-1



It has been argued that gapped systems with a topological
degeneracy could provide physical ways to implement quan-
tum bits squbitsd that would be protected from decoherence
by their topological nature.6,7,11,12 Since nolocal measure-
ment can distinguish the different ground states if the system
is infinitely large, any manipulationsunitary rotationd or
measurementsprojectiond of the state of the qubit through
local observables will have to rely on finite-size effects. We
discuss this issue in Sec. V in light of the present solvable
model. The effective Hamiltonian acting on the two lowest
levels is expressed in terms of two generatorsTx and Tz of
rotations of the qubit about two quantization axes. We finally
explain how one could take advantage of the phase transition
at l=lc to perform unitary rotations. The problems of this
approach, such as thermal excitations, will also be discussed
briefly.

II. ARROW REPRESENTATION, SOLVABLE QDM, AND
TOPOLOGICAL DEGENERACY

We consider a QDM defined on a kagome lattice with
periodic boundary conditions in one directionscylinderd, but
the arguments are easily generalized to other topologies.

A. Arrow representation

Because it is the natural formalism to describe and solve
the QDM discussed here, we begin by reminding the repre-
sentation of dimer coverings of the kagome lattice in terms
of arrows.4,13

The sites of a kagome latticeK snotedid can be identified
with bonds of the hexagonal latticeH.14 The triangles ofK
snotedtd are sites ofH. As for hexagons ofK snotedhd, they
also correspond to hexagons ofH.

From asfully packedd dimer covering ofK we orientate
the bonds ofH sarrowsd in the following way: Each bond of
H is a site ofK, which has one dimer, and the corresponding
arrow points toward the interior of the trianglesof Kd where
the other end of the dimer is located. This is illustrated in
Fig. 1. As a consequence, the number of incoming arrowssd
is evens0 or 2d at each vertex ofH. Inversely, any arrow
configuration satisfying the parity constraint at each vertex
defines a unique dimer covering.

We can now define the operatorstx, tz, andsx acting on
the arrows. The notations are those of Refs. 4 and 15.

sid ti
z: flips the arrow at sitei PK. Any product ti

zt j
z
¯

around aclose loopsof Hd is a “physical” operator in the
sense that it conserves all the constraints.

sii d sh
x=pi=1

6 ti
z. Flips the six arrowsi =1¯6 around the

hexagonh ssmallest closed loop onHd.16 From the definition
of tz above, thesx operators satisfyssxd2=1 and commute
with each other.

siii d ti
x: Compares the arrow at sitei with the arrow in

some sarbitraryd reference coverings=+1 if they are the
same, −1 otherwised. The hard-core constraint on dimers
translates intot0

xt1
xt2

x=1 for every triangles012d of the
kagome lattice.

From now on, and for most purposes, one can forget the
dimers themselves and focus only on the bond degrees of

freedomti
x= ±1.17 We note that, in principle, theti

x= ±1 de-
grees of freedom could be physically realized with real spins
living on a kagome lattice. A strong easy-axis anisotropy
could then force them to point toward the center of one of
the neighboring triangles.

B. Bulk Hamiltonian

The QDM introduced in Ref. 4 is

H0 = − o
h

sh
x = − o

h
p
1

6

thi

z . s1d

All the eigenstates are easily obtained, because thesh
x opera-

tors commute with each other and have two eigenvalues
sh

x= ±1.18

C. Topological sectors

As usual for dimer models, the configurations are grouped
in topological sectorssTSd; two configurations are in the
same TS if and only if they can be transformed into each
other by a succession oflocal19 moves. As explained below,
there are two TS when the system has the topology of a
cylinder.

First, draw a cutD scrossing the bonds of the latticed
going from one edge of the cylinder to the othersFig. 2d. Let
ND be the number of dimers crossingD. It has a simple
expression in terms of theti

x,

ND =
1

2o
i=0

L

s1 − ti
xd, s2d

where the sitesi =0¯L are the centers of the bonds ofH that
are cut byD, as shown in Fig. 3. For simplicity, we assume
in Eq. s2d that no dimer crossesD in the reference covering.

Any local dimer move conserves the parity ofND, and it
is natural to define

Tx = p
iPD

ti
x = s− 1dND. s3d

All coverings withTx=1 s−1d define a TS calledS+ sS−d and
H0 can be diagonalized separately in each sector.

FIG. 2. Kagome lattice on a cylinder with a cutD going from
one edge of the cylinder to the other. The dual cutD* passes
through the centers of the triangles and winds around the cylinder.
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D. Topological degeneracy ofH0

It is straightforward to check thatH0 has the same energy
in each sector. LetD* be a closed loop encircling the cylinder
sFig. 2d, and define an operator,

Tz = p
iPD*

ti
z, s4d

that flips all the corresponding arrows.Tz commutes with all
the sx operators and mapsS+ onto S−,

TzTx = − TxTz s5d

This shows that ifucl is an eigenstate ofH0, Tzucl is an
eigenstate ofH0 with the same energysbut in the other TSd.
This demonstrates the twofoldstopologicald degeneracy of
the eigenstates ofH0.

III. PERTURBATION LIFTING THE DEGENERACY
BETWEEN THE Tx= ±1 SECTORS

We introduce a potential-energy term that couples to the
dimers crossingD,20

H1 = 2lND s6d

=lo
i=0

L

s1 − ti
xd. s7d

As discussed in the Introduction, we expect that a smalll
should not affect the twofold degeneracy, whilel@1 should
leave a single ground state. In presence ofH=H0+H1,
Tx=s−1dND is still a conserved quantity, butTz does not com-
mute withH1, and the two sectors are no longer degenerate
when lÞ0. Since forl@1 the system minimizesND, the
ground state of theTx= +1 sector tends to a state with
ND.0 and that of theTx=−1 sector to a state withND.1.
Instead of having a superposition of dimer configurations
with different values ofND, but a fixedparity snonlocalob-
servabled, the largel limit corresponds to a well-definedND

ssum of local operatorsd. While Tx is still a conserved quan-
tity, we already see that the topological nature of the
Tx= +1 andTx=−1 sectors disappears whenl is large.

The perturbationH1 is identical to the one used by Ioffe
et al.7 in a triangular-lattice QDM in order to manipulate
s“phase shifter”d their qubit. However, in our case,the exis-

tence of an arrow representation makes it possible to exactly
calculate the spectrumof H=H0+H1.

A. Mapping to the ICTF

The HamiltonianH=H0+H1 fEqs. s1d and s7dg can be
separated into “bulk” and “chain” parts as below,

H = HD + Hbulk, s8d

HD = − o
i=1

L

shi

x + lo
i=0

L

s1 − ti
xd, s9d

Hbulk = − o
h8¹D

sh8
x . s10d

It is important to emphasize thatHD andHbulk commute with
each otherand can therefore be treated separately. From now
on we concentrate onHD.

sz pseudospins—A sh
z operator can be introduced for

each hexagonh in the following way. Due to the local con-
straint sti

xt j
xtk

x=1 on each triangle ofKd, the bonds ofH
where tx=−1 necessarily form nonintersecting closed
loops.21 We interpret these loops as domain walls for some
Ising pseudospinssh

z= ±1 that leave on each hexagon. To
remove the twofold ambiguity we assume that the exterior
has a fixed spinsext

z =1. In turn, this defines asint
z associated

with the “interior” sFig. 4d. It is easy to check that this Ising
spin labels the TS of the configuration because
sint

z =piPD*ti
x=Tx. The other bulk pseudospins are those in-

troduced by Elser and Zeng.13 Eventually we mention thatsh
z

andsh
x anticommutesthey commute if not on the same hexa-

gond, as suggested by the Pauli matrix notation. This is easily
checked from the definition ofsh

x in terms of arrows. From
the definition ofsh

z we have the relation,4,22

sh
zsh8

z = ti
x, s11d

where h and h8 are the two hexagons touchingi. For an
arrow i0 next to a boundaryssay interiord, this relation is
modified to

sh
zsint

z = ti0
x . s12d

These relations are used to get

FIG. 3. Dimer covering of the kagome lattice in the vicinity of
the cutD sdashed lined. The arrows next toD fappearing in Eq.s2dg
are shown. The signs in the hexagons Int.,h1, . . . ,hL, Ext. indicate
the values of the corresponding pseudospinssz swith the assump-
tion that the reference configuration has no dimer crossingDd.

FIG. 4. Cylinder sfull linesd and loopssdashed linesd along
which a dimer configurationc differs from the reference. The signs
indicate the value ofsz in each domain.
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HD = − o
i=1

L

shi

x − lo
i=0

L

shi

z shi+1

z + sL + 1dl, s13d

where the two boundary spins are identified ass0
z=sint

z and
shL+1

z =sext
z . It appears thatHD is nothing but the Hamiltonian

of an open ICTF with a magnetic exchangel and a trans-
verse field equal to 1. This model can be solved by a stan-
dard Jordan-Wigner transformation, and it maps onto free
fermions. In the thermodynamic limit it has a paramagnetic
phase withksh

zl=0 for ulu,lc=1 and an ordered phase with
ksh

zlÞ0 for ulu.lc=1.
The boundary spinss0

z and shL+1

z play special roles.
shL+1

z =sext
z is fixed to 1, buts0

z=sint
z is freesbut conserved by

HDd and labels the TS. The spectrum of the ICTF can thus be
studied separately fors0

z= +1 or s0
z=−1. One takeslù0

sferromagnetic chaind without loss of generality. The sector
with s0

z= +1 thus corresponds tounfrustrated boundary con-
ditions for the spseudospind chain. On the other hand, choos-
ing s0

z=−1 amounts to imposing at least one Ising domain
wall in the system.23 In the thermodynamic limit both sectors
have the same energyper site, but they may have a finite
difference in the total energysgapd. In the paramagnetic
phase sl,1d, because of the finite spin-spin correlation
length jsld, the frustration has an exponentially smaller ef-
fect on the ground-state energy, and the energy difference
between the two TS isDE,exps−L /jd with j. lns1/ld−1

ssee Ref. 12 and Appendix Ad. On the other hand, in the
ferromagnetic phasesl.1d, the Ising spins want to order
and the boundary conditions0

zÞsL
z generates afinite energy

costDE,OsL0d fsee Eq.sA13dg.
The result is thus that forl,1 the ground state is asymp-

totically twofold degenerate in the thermodynamic limit. The
gap between the two TS isDE,expf−L /jsldg wherej is the
correlation length of the ICTF. In the thermodynamic limit
there is a finite critical valuelc=1, above which the topo-
logical degeneracy is destroyed. Abovelc the Ising pseu-
dospins have a positive magnetization. Sincesh

z is an opera-
tor that creates an Ising vortexsvison4d, it is natural to
interpret ksh

zl.0 as the existence of acondensateof those
particles salong Dd. This condensation is responsible for
changing the “effective” topology of the system from a cyl-
inder into a disk. In this simple model what happens along
the chainD is decoupled from the bulk of the system. The
perturbation caused by the potentiall does not extend into
the bulk, which remains a liquid with noninteracting and
static vison excitations.

IV. MIXING THE Tx= ±1 SECTORS WITH MONOMERS

The perturbationH1 discussed in Sec. III is not the only
way to remove the topological degeneracy. It is well known
that in the presence of mobile monomers,Tx=s−1dND is no
longer conserved.24 This property was used in Refs. 7 and 11
to mix the topological sectors. We will show that in our
kagome geometry the arrow representation of the dimer
model allows us to exactly compute the spectrum of the sys-
tem when monomers are allowed to be created, to hop, and

to be destroyed along a line winding around the cylinder. As
we will see, this model is closely related to the one discussed
in the Sec. III:D is replaced byD* , monomers will play the
role of the visons, and the ICTF will have periodic and an-
tiperiodic boundary conditions, instead of open ones.

A. Hamiltonian

We relax the parity constrainttt0
x tt1

x tt2
x =1 on each triangle

t, so that triangles with one or three incoming arrows are
allowed. When a triangle hasone incoming arrow, it is natu-
rally interpreted as the presence of a monomersor holed at
the site of this arrowssee Fig. 5d. When a triangle hasthree
incoming arrows, we interpret it as a monomer and a dimer,
which are delocalized over the three sites.25 Flipping one
arrow si.e., acting withti

zd on a dimer state therefore creates
two monomers on the nearby trianglessone of which may be
delocalized over three sitesd. We consider the following
Hamiltonian:

H08 = − o
h

sh
x + Uo

t

s1 − tt0
x tt1

x tt2
x d s14d

=− o
h

p
i=1

6

thi

z + Uo
t

s1 − tt0
x tt1

x tt2
x d, s15d

whereh1¯6 are the sites around hexagonh, andt1,2,3 are the
sites of the trianglet ssee Fig. 5d. U is a large energy enforc-
ing the constraint on low-energy states. This type of model
was first considered by Kitaev.6 For U.0 the ground state of
the HamiltonianfEq. s15dg is the same as forU=` fequiva-
lent to Eq.s1dg sincett0

x tt1
x tt2

x commutes with all thesx. How-
ever, static pairs of monomers are present in excited states
with energies greater than 2U above the ground state.

Like Ioffe and co-workers,7,11 we wish to use these mono-
mers to couple the two TS. For this purpose the monomers
are allowed to be created and to propagate along one closed
loop D* winding around the cylindersFig. 2d. The simplest
term which does this is

H18 = − mU o
iPD*

ti
z. s16d

sThis choice of normalization will make the analogy with the
l perturbation clearer.d When ati

z term acts on a site located

FIG. 5. Top: Kagome lattice in the vicinity of the cutD* sdashed
lined. Bottom: Mixed dimer-monomer configuration and the arrow
representation.
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between two triangles satisfying the constraintstt0
x tt1

x tt2
x =1d,

it creates a pair of monomers. When it acts on a pair of
triangles violating the constraint, the pair of monomers is
destroyed. If it acts on a site located between triangles with
different values oftt0

x tt1
x tt2

x , a monomer hops from one tri-
angle to the other.

B. Mapping to the ICTF

As in Eq. s8d, H08+H18 splits into bulk and one-
dimensional parts,26

H08 + H18 = Hbulk8 + HD* , s17d

Hbulk8 = − o
h

sh
x + U o

t¹D*

s1 − tt0
x tt1

x tt2
x d, s18d

HD* = − mU o
iPD*

ti
z + U o

tPD*

s1 − tt0
x tt1

x tt2
x d. s19d

One can simply check thatHD* and Hbulk8 commute with
each other, so that one has to study a one-dimensional model
HD* . This model is identical to a closed ICTFswith periodic
or antiperiodic boundary conditionsd, as explained below.
Each triangle t crossed byD* corresponds to asite of the
spin chain. The associated transverse-field term for this Ising
spin is

s̃t
x = tt0

x tt1
x tt2

x . s20d

We define thez component of the spins as

s̃t
z = t0

zt1
z
¯ ¯ tistd

z , s21d

where 0 is ansarbitraryd origin onD* andistd is the site ofK
in common with trianglest and t−1. It is simple to check
that thes̃x ands̃z defined abovesnot to be confused withsx

andszd obey the usual Pauli matrix algebra and play the role
of spin-12 operators. In addition, these definitions ensure that

s̃t
zs̃t+1

z = tt3
z , s22d

wheret3 is the common site between trianglest and t+1 sas
in Fig. 5d. BecauseD* is a closed curve, special care is
needed for the last term,

Tzs̃L−1
z s̃0

z = t0
z, s23d

where Tz fdefined in Eq.s4dg commutes withHD* sin the
same way as before withfHD ,Txg=0d. It can be successively
set to ±1 to obtain the whole spectrum. With these notations
HD* reads

1

U
HD* = − mSTzsL−1

z s̃0
z + o

t=0

L−2

s̃t
zs̃t+1

z D − o
t=0

L−1

s̃t
x + cst.

s24d

This is the Hamiltonian of an ICTF with periodic boundary
conditions whenTz=1 and with antiperiodic boundary con-
ditions whenTz=−1. As for HD, the model has, in the ther-
modynamic limit, a phase transition atmc=1 between a para-

magnetic phase and a ferromagnetic phase. The calculation
of the gap between the two sectors amounts to studying a
closed ICTF with periodic and antiperiodic boundary condi-
tions. The exact result for the energy differenceDE8 is de-
rived in Appendix Bssee also Ref. 12d with the help of a
Jordan-Wigner transformation. In the limit of a large system
sL@1d it is given by

DE8 = E+ − E− . 2UÎ1 − m2

Lp
mL for m , 1 s25d

.2Usm − 1d for m . 1. s26d

The result forL=10 is plotted in Fig. 6. As forHD, the
critical valuemc=1 separates a regime with an exponentially
small splitting between the sectorsfEq. s25dg and a regime
with a finite gap between themfEq. s26dg. In the spin lan-
guage, the ferromagnetic phase is characterized byks̃zlÞ0.
Going back to dimer and monomers variables, we find that
s̃t

z flips all the arrows located onD* between the origin andt.
Thus, it creates or annihilates a pair of monomers sitting at
both ends of the string or moves a monomer from one end to
the other. In both casess̃t

z creates or destroys a monomer on
the trianglet.26 ks̃zlÞ0 can thus be interpreted as aconden-
sationof monomers alongD* . This is equivalent to the con-
densate of visons mentioned in the case ofHD whenl.1.

To conclude this section we discuss a difference between
the l and them perturbations. In the limit wherel→` no
dimer can sit onD anymore and the torus is reduced to a
rectangle, as if the lattice had been cut with scissors. If the
same geometrical picture was true for the perturbationm
alongD* , one would erroneously conclude that the system is
effectively transformed intotwo cylinders with a fourfold
ground state degeneracy. This is incorrect for the following
reason. The pathD* chosen to defineTzsD*d fEq. s4dg may be
shifted by multiplication with asx operator,

sxshdTzsD1
*d = TzsD2

*d, s27d

whereh is a hexagon next toD1
* and D2

* is identical toD1
* ,

except that it passes on the other side ofh. From Eq.s27d, we
see thatTzsD1

*du0l does not depend on the location ofD1
* , as

long as this closed curve is deformed by passing only on

FIG. 6. Effect of a change of boundary conditions on the
ground-state energy of an ICTF withN=10 spins as a function of
the sferromagneticd exchangel. Circles: closed chain with periodic
and antiperiodic boundary conditions. Thin line: ground-state en-
ergy difference between open chain with ferromagnetics↑¯ ↑ d and
antiferromagnetics↓¯ ↑ d boundary conditions. Thick line:N=`
casessame result for the open and closed chainsd.
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hexagons withsxshd=1. In the case of a perturbationm, the
ground state satisfiessxshdu0l= u0l for all hexagonsh, even
those alongD* . sThis is not true for thel perturbation which
does not commute withsx.d Therefore, one cannot indepen-
dently flip the topological sector of the “upper” cylinder with
someT1

z without changing the sector of the “lower part,”
which is controlled by aT2

z, sinceT1
zu0l=T2

zu0l.

V. A TOY MODEL FOR A TOPOLOGICAL QUBIT

Kitaev6 suggested that systems with topologically degen-
erate ground states could be used to realize qubits protected
from decoherence. This suggestion was then made more pre-
cise by Ioffe and co-workers7,11 and Douçot and
co-workers12,28 who proposed to use Josephson junctions ar-
rays to implement such a system. As mentioned in the Intro-
duction, the topological nature of the degeneracy makes it
difficult to “manipulate” sperform unitary rotationd, because
it is almost insensitive to local couplings. On the other hand,
it may be difficult to apply a perturbation corresponding to a
nonlocal operatorssuch asTz or Tyd. If, however, the system
allows for a hardware implementation of such a nonlocal
operator,29 it represents a dangerous channel through which
perturbations could bypass the topological protection and
contribute to the decoherence of the qubit. If such a nonlocal
coupling to the system exists, one must be able to “discon-
nect” it efficiently when it is not active.

The clever solution proposed in Refs. 7 and 11 consists of
perturbing the system with two external potentials acting
along two lines, exactly likeD and D* . While these pertur-
bations are localsmore precisely they are sums of local
termsd, they induce a splitting of the two ground states pro-
portional tolL and therefore induce a slow precession of the
qubit. In this section we take advantage of the exact solution
of the model to discuss these effects beyond the regime
wherelL!1.

A. Unitary rotations

Combining the perturbations alongD and D* the Hamil-
tonian is

Hsl,md = H08 + H18 + H1

= − o
h

p
i=1

6

thi

z + Uo
t

s1 − t0
xt1

xt2
xd s28d

− mU o
iPD*

ti
z − lo

iPD

sti
x − 1d. s29d

From the previous calculations we know thatHsl ,m=0d
lifts the degeneracy of the two TS. It acts in this two-
dimensional subspace asDEsldTx, where DEsld, given in
Eqs. sA13d and sA15d, is the energy difference between the
ferromagnetic and antiferromagnetic boundary conditions for
an ICTF with exchangel sand a unit transverse fieldd. On
the other hand,Hsl=0,md mixes the two sectors. Its action
is described byUDE8smdTz where DE8 fEq. sB23dg is the
energy difference between the periodic and antiperiodic

boundary conditions for an ICTFswith exchangemU and
transverse fieldUd.30

If the system is operated below the critical values ofl and
m, the qubit precesses at a frequency that is exponentially
small in the system size. The cylinder topology and the low
density of monomers protect the degeneracy of the spectrum.
This is the regime mentioned by Ioffe and co-workers. How-
ever, the system size cannot be too large, because the time
required for a unitary rotation would become exponentially
long. On the other hand, if the system is not large enough, its
topology does not fully protect it from decoherence by ex-
ternal perturbations.

If one of the external parameterssl or md is pushed above
its critical value, the frequency becomes finite, even in case
of a large system size. We may therefore take advantage of
the phase transitions in a large system. In such a case the
qubit is topologically protected as long asl and m are
smaller than their critical values, even if they are not pre-
cisely set to zero or if they introduce some noise. It is only
during the manipulationflstd.1 or mstd.1g that the state
of the qubit evolvessand is sensitive to the external noise
entering throughD or D*d.

To preserve an adiabatic evolution one must avoid transi-
tions to other eigenstates. However the gap in the spectrum
of the ICTF becomes smallsof the order of,1/Ld in the
vicinity of the transition. This limits the typical time of the
unitary rotation to be at least of the order ofL. This linear
dependence in the system size is an interesting property, be-
cause it should be compared to theexponentialdependence
s,l−Ld present in the perturbative regime. Also because of
this small gap, the temperature must beT!1/L to avoid
thermal excitations whenl sor md is close to 1. Using the
transition to perform unitary rotation, therefore, seems to im-
prove the time of operation and could enable us to use a
larger system and benefit from a stronger topological protec-
tion. It also requires us to work at a lower temperature than
that for a qubit operated in the perturbativesl ,m!1d regime
only, and this may represent a severe limitation.

B. Reading out the state of the qubit

We assume that the qubit is in a linear combination of the
two topological sectors,ucl=au+l+bu−l where Txu+l= u+l
and Txu−l=−u−l. We wish to measureuau2 with a local ob-
servable. This is not directly possible if the system is very
large, since any local observable has expectation values in
u1l andu2l, which are exponentially close. Likewise, a local
observable has a vanishing matrix element betweenu1l and
u2l. A possible procedure could be to switch adiabatically
the potentiall above the transition. For a strong-enoughl,
the stateu1l evolves to a superposition of dimer coverings
with no dimer crossingD. On the other hand,u2l evolves to
a superposition of dimer coverings withonedimer crossing
D. This is because the paritysTxd is a conserved quantity
under the evolution, but the ground state has to minimizeND

aslstd grows. Asprojectived measurement detecting the pres-
ence of a dimer on some bond crossingD will thus give 1
with the probabilityuau2/L. The whole operation has to be
repeated many timess,Ld before uau2 is known with a rea-
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sonable accuracy, but one may improve the efficiency of the
measurement by having a bond alongD, where the energy
cost of a dimer is less than on other bondssin which case the
dimer, if present, will localize on this particular bond whenl
becomes larged. Of course the reading procedure described
above suffers from the same limitationsstime proportional to
L and low temperatured as the unitary rotation.

VI. CONCLUSIONS

We have shown that the QDM of Eq.s1d can be simply
solved in the presence of two kinds of perturbations: an ex-
ternal potential that couples to dimers crossing a line or the
inclusion of monomers. This provides a simple example of
system with aZ2 fractionalized phase, where the topological
degeneracy is destroyed by tuning an external parameter
through a quantum phase transitionsbelonging to the classi-
cal Ising two-dimensionals2Dd universality classd.

We also discussed some properties of this toy model from
the point of view of an ideal topological qubit, in which case
the exact solution allows us to follow the two lowest eigen-
states as a function of some external parameters. These two
parameters can be used to perform unitary rotations of the
qubit and provide an exactly solvable version of some ideas
introduced previously.7 In addition, we pointed out that the
phase transition could, in principle, be used to improve the
robustness to decoherence, because it could enable us to use
a largersalthough not infinited system. Concerning the mea-
surement of the qubit, we also emphasize the interesting
properties of the phase transition as it turns a nonlocal prop-
erty sparity of the number of dimers crossing a lined into a
local propertysdimer densityd. From this point of view, we
note that the method has some resemblance to the flux-
trapping experiment imagined by Senthil and Fisher10 to de-
tect visons inZ2 fractionalized systems.
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APPENDIX A: GROUND-STATE ENERGY OF AN ICTF
WITH OPEN BOUNDARY CONDITIONS

We apply fixed boundary conditions to an open ICTF and
compute the energy difference between those for the cases of
ferromagnetic boundary conditionsstwo fixed up-spins at the
endsd and antiferromagnetic boundary conditionssone up-
spin at one end and a down-spin at the otherd. This result was
obtained recently by Douçotet al.,12 but we give here for
completeness a detailed derivation of the result.

1. Hamiltonian and free fermions

The Hamiltonian is

H = − o
n=1

L

sn
x − mo

n=0

L

sn
zsn+1

z , sA1d

with two fixed spins at the ends of the chain,sL+1
z =1 and

s0
z= ±1, depending on the boundary conditions. Using a

standard Jordan-Wigner transformation to represent the Ising
operators with spinless fermions,

sn
x = 2cn

†cn − 1, sA2d

sy + isz = 2cn
† expSipo

i=0

n−1

ci
†ciD , sA3d

sn
zsn+1

z = scn
† + cndscn+1 − cn+1

† d. sA4d

H is quadratic in the fermion operators and can be diagonal-
ized by a Bogoliubov transformation. To find the quasiparti-
cle creation operatorsd† we consider the following form
sAnsatzd:31

dv
† = fv

† − fv−1
† , sA5d

fv
† = o

n=0

L+1

vnscn
† + cnd + ibsvdo

n=0

L+1

vnscn
† − cnd, sA6d

wherev andbsvd have to be determined. One can check that

fH,dv
†g = Esvddv

† ,

fH,dvg = − Esvddv, sA7d

with Esvdù0, provided the following equations are satis-
fied:

Esvd = − 2ibsvds1 + lv−1d, sA8d

iEsvdbsvd = − 2s1 + lvd, sA9d

vL+1 − v−L−1 = − lsvL+2 − v−L−2d. sA10d

The two first equations come from the terms 0ønøLg in
Eq. sA7d. These equations determine the energy of the qua-
siparticles as a function ofv,

Esvd = 2Îl2 + lsv + v−1d + 1. sA11d

The third equationsA10d comes from the boundary at
n=L+1 and is a constraint on the availablev.

2. CaselÐ „L +1/L +2…

For lù sL+1/L+2d the Eq.sA10d hasL+1 distinct solu-
tions of the form,

v = eik with k P f0,pg,

l = −
sinfsL + 1dkg
sinfsL + 2dkg

. sA12d

These fermionic levels are those required to describe the
L+1 spinsn=0¯L. Because we have chosenE to be always

QUANTUM DIMER MODEL WITH A Z2 LIQUID… PHYSICAL REVIEW B 71, 184424s2005d

184424-7



positive, the absolute ground stateswhatever s0
zd is the

vacuum u0l of the dv
†. The lowest excited state isdk0

† u0l,
where we have added the fermion with the smallest energy
D. It corresponds to the solutionk0 of Eq. sA12d, which is the
closest top. This solution can be calculated by an expansion
in 1/L and we obtain

D = 2sl − 1d +
lp2

sl − 1dL2 + OsL−3d. sA13d

So far we have not specified the value ofs0
z corresponding to

each level. In the limit wherel@1 it is clear that the ground
state is in the sectors0

z=1. Since one can show that no level
crossing occurs forl.0 in such a finite chain, the fermion
vacuumu0l satisfiess0

zu0l= u0l for all l.0 and corresponds
to a state of the system with ferromagnetic boundaries. On
the other hand, inserting anydv

† fermion changes the sign of
s0

z ssince alldv
† anticommute withs0

z=c0
†+c0d. The first ex-

cited statedk0

† u0l is thus the ground state of the system with
antiferromagnetic boundary conditionsss0

z=−1d, and the gap
between the two sectors is given byD fEq. sA13dg.

3. Case 0,lÏ „L +1/L +2…

In the range 0.lù sL+1/L+2d, only L solutions of the
form of Eqs.sA12d exist. The “missing” solutionv0 has the
lowest energy and is real,v0P g−` ,0g. It corresponds to a
bound statesimaginary wave vectord for the fermions. In the
thermodynamic limit one hasv0=−1/L and finite-size cor-
rections can be evaluated,

v0 = −
1

L
+ l2L+1s1 − l2d + OsLl4Ld, sA14d

which gives an energy gap,

D = 2lL+1s1 − l2d + OsLl3Ld. sA15d

As before, this gap is the ground-state energy difference be-
tween antiferromagnetic and ferromagnetic boundary condi-
tions for the spin chain.

APPENDIX B: GROUND-STATE ENERGY OF AN ICTF
WITH PERIODIC OR ANTIPERIODIC BOUNDARY

CONDITIONS

We compute the ground-state energy of a closed ICTF
with periodic and antiperiodic boundary conditions. The lat-
ter result has also been obtained recently by Douçotet al.,12

but we give here a detailed derivation of the result. We also
note that this calculation has some similarities to the evalu-
ation of the ground-state energy splitting in the triangular-
lattice QDM at the Rokhsar-Kivelson pointsusing a Pfaffian
techniqued.8

1. Periodic boundary conditions

The Hamiltonian is

H = − o
n=0

L−1

sn
x − mo

n=0

L−1

sn
zsn+1

z , sB1d

with sL
z =s0

z. The Ising operators are represented with spin-
less fermions, as in Eqs.sA2d–sA4d. Due to the periodic
boundary conditions we also have

sL−1
z s0

z = − scL−1
† + cL−1dsc0 − c0

†dexpSipo
n=0

L−1

cn
†cnD .

sB2d

It is simple to check that

p
n=0

L−1

sn
x = expSipo

n=0

L−1

ci
†ciD sB3d

is a conserved quantity. The spectrum can thus be studied
separately in the sectorspn=0

L−1sn
x= ±1. HoweverH has off-

diagonal matrix elements in the natural Ising basis which are
all ø0. This ensures that the ground state has only positive
weight in this basis, and it therefore belongs to the sector

p
n=0

L−1

sn
x = 1. sB4d

In the following we thus consider fermions subjected toan-
tiperiodic boundary conditionsfsee Eqs.sB3d and sB4d and
the 2 sign in the right-hand side of Eq.sB2dg.

After Fourier transform the Hamiltonian becomes

Hchain= o
k=s2n+1dp/L

hfim sinskdck
†c−k

† + H.c.g

− 2ck
†ckfm cosskd + 1g + 1j, sB5d

which is diagonalized by a Bogoliubov transformation,

Hchain= o
k=s2n+1dp/L

eskdFdk
†dk −

1

2
G , sB6d

eskd = 2Îm2 + 1 + 2m cosskd. sB7d

Using the explicit form of the transformation and the antipe-
riodic boundary conditions on the fermions, one can show
that the vacuumu0l of the dk

† fermions satisfies

expSipo
n=0

L−1

cn
†cnDu0l = + u0l. sB8d

This is consistent with Eq.sB4d and the ground state is thus
u0l. Its energy is

EP = −
1

2 o
k=s2n+1dp/L

eskd. sB9d

2. Antiperiodic boundary conditions

To ensure thatsL
z =−s0

z, the fermions are now subjected to
periodic boundary conditionsfsee Eq.sB2dg. However, for
m.1 it is necessary to add onedk

† fermion to ensure the
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correct parity under a global spin flip. Since the dispersion
relation eskd is minimum in esk=0d=2um−1u, the ground
state form.1 is

u1l = d0
†u0l. sB10d

The ground-state energy of the chain with antiperiodic
boundary conditions is thus

EA = −
1

2 o
k=s2n/Ldp

eskd + 2sm − 1d for m . 1 sB11d

=−
1

2 o
k=s2n/Ldp

eskd for 0 ø m ø 1. sB12d

3. Energy difference

From the calculation above the energy difference between
the ground states of the two boundary conditions issfor m
ø1d

EA − EP = Î2mo
n=0

L−1

fÎcosha0 − cosskn+1/2d

− Îcosha0 − cosskndg , sB13d

where

kn =
2np

L
, sB14d

anda0 is defined by

cosha0 =
m2 + 1

2m
sù1d, sB15d

a0 = − lnsmd. sB16d

The difference between the two sums can be related to a
contour integralI0 in the complex plane,

EA − EP = Î2mLI0, sB17d

where

I0 = −
1

2ip
R

C

fszd
sinsLzd

dz, sB18d

and

fszd = Îcosha0 − cosszd. sB19d

The contour is shown Fig. 7. The equality, Eq.sB17d, can be
demonstrated by using the fact that the poles inside the con-
tour are located atz=kn andz=kn+1/2, and they have alternat-
ing residues proportional to −fsknd /L and +fskn+1/2d /L. The
contour can be decomposed into several regions,I0= IA+ IA8
+ IB+ IC+ IC8 sFig. 7d. Using the odd parity of the integrand

underz→−z, one hasIC= IC8, and using the periodicity under
z→z+2p one findsIA+ IA8=0. The integrand is exponen-
tially small when Imfzg→ ±`, so the regionB does not con-
tribute. We therefore haveI0=2IC. The integral over the re-
gion C is given by the discontinuity of the integrand along
the branch cut,

IC =
1

2ip
E

a0

`

idrH fsir + o−d
sinfLsir + o−dg

−
fsir + o+d

sinfLsir + o+dgJ
=

1

p
E

a0

`

dr
Îcoshsrd − coshsa0d

sinhsLrd
. sB20d

When the system size is largesL→`d the behavior ofIC is
dominated by values ofr close toa0. In this limit,

IC .
Îsinha0

p
E

a0

`

dre−LrÎr − a0 .
Îsinha0

2Îp
e−La0L−3/2,

sB21d

so that the energy difference is

EA − EP = 2Î2mLIC . 2Î2m sinha0

Lp
e−La0 sB22d

.2Î1 − m2

Lp
mL. sB23d

The calculation ofEA−EP for m.1 is almost identical to
the m,1 case described above. The difference between the
sums ofeskd on “even” and “odd” momenta is again ex-
pressed with the integralIC, but with a0= lnsmd. Combining
this with Eqs.sB9d and sB11d gives

EA − EP = 2sm − 1d + 2Îm2 − 1

Lp
m−L. sB24d

FIG. 7. Contour in the complex plane used to define the integral
IC. The crosses on the real axis indicate the poles of 1/sinsLzd and
the fat segments on the imaginary axis indicate the branch cuts of
fszd. The regionB is sent to Imfzg= ±`.
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